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Opinion
Oxytocin and vasopressin are regulators of anxiety,
stress-coping, and sociality. They are released within
hypothalamic and limbic areas from dendrites, axons,
and perikarya independently of, or coordinated with,
secretion from neurohypophysial terminals. Central oxy-
tocin exerts anxiolytic and antidepressive effects, where-
as vasopressin tends to show anxiogenic and depressive
actions. Evidence from pharmacological and genetic
association studies confirms their involvement in indi-
vidual variation of emotional traits extending to psycho-
pathology. Based on their opposing effects on emotional
behaviors, we propose that a balanced activity of both
brain neuropeptide systems is important for appropriate
emotional behaviors. Shifting the balance between the
neuropeptide systems towards oxytocin, by positive
social stimuli and/or psychopharmacotherapy, may help
to improve emotional behaviors and reinstate mental
health.

Introduction
Over the past years, substantial progress has been
achieved with respect to our neurobiological understand-
ing of the link between anxiety and stress-coping, on the
one hand, and social behaviors on the other. A dynamic
interplay of genetic, epigenetic, and environmental factors
orchestrates both individual behavioral variations and the
etiology of anxiety- and depression-related disorders. De-
spite this progress, available treatment options are far
from being mechanism-based, which explains the need
for innovative therapeutic interventions. One focus of
modern psychiatric research for future therapies has been
on neuropeptide systems, with oxytocin (OXT) and argi-
nine vasopressin (AVP) featuring prominently in such
endeavors [1–5]. The synthesis and release of OXT and
AVP within the brain are driven by anxiogenic, stressful,
and notably social (both positive and negative) stimuli
[1,6]. In turn, once released, both neuropeptides are key
regulators of anxiety-related behavior, passive versus ac-
tive stress-coping as an indicator of depression-like behav-
ior, and multiple aspects of social behavior [1–4,7].

We here discuss experimental evidence, primarily from
rodents, but with complementary data from human studies
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([5] for review of human data), for opposing effects of OXT
and AVP on the fine-tuned regulation of emotional behav-
ior. Specifically, OXT exerts anxiolytic and antidepressive
effects, whereas AVP predominantly increases anxiety-
and depression-related behaviors. We will therefore put
forward the hypothesis that a dynamic balance between
the activities of brain OXT and AVP systems impacts upon
hypothalamic and limbic circuitries involved in a broad
spectrum of emotional behaviors extending to psychopa-
thology.

Central release patterns of OXT and AVP: coordinated
and independent secretion into blood
Following their neuronal synthesis in the hypothalamic
supraoptic (SON) and paraventricular (PVN) nuclei (OXT,
AVP), or in regions of the limbic system (AVP), both
neuropeptides are centrally released to regulate neuronal
processes in a spatially and temporally fine-tuned manner.
As neurotransmitters, following release from axon term-
inals they contribute to the synaptic mode of rapid infor-
mation processing via hard-wired neuronal connections
[1,8]. A complementary mode of OXT and AVP release is
non-synaptically from dendritic, somatic, and non-termi-
nal axonal regions of the neuronal membrane [1,9]
(Figure 1). Upon diffusion to nearby or remote receptors
via the extracellular fluid (ECF) and ligand binding, the
association of the OXT receptor (OXTR) and the AVP
receptor (AVPR) subtypes AVPR1A and AVPR1B with
specific intraneuronal signaling cascades determines their
acute or long-term effects [10–12]. Whereas the quality of
neuropeptide-induced effects is primarily determined by
localization of their receptors in distinct, particularly hy-
pothalamic and limbic, brain areas [10], local concentra-
tion of the neuropeptide ligand in the ECF and receptor
density are the major determinants of the intensity and
duration of such actions. Importantly, OXT and AVP
actions may partly overlap, due to >85% homology be-
tween their receptors, and this has both physiological and
pharmacological implications [13,14].

Simultaneous microdialysis and blood sampling has pro-
vided evidence for both coordinated and independent
release of OXT and AVP within the brain, and from neuro-
hypophysial terminals into blood (Figure 1), and these seem
to be both stimulus-dependent and peptide-specific [1,15].
Providing evidence for coordinated release, numerous
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Figure 1. The brain oxytocin (OXT) system: neuronal projections, release, receptor-mediated effects, and external application. Physiologically, OXT is secreted as a

neurohormone into the bloodstream from axon terminals of magnocellular hypothalamic OXT neurons via neurohemal contacts within the posterior pituitary upon

stimulation (e.g., birth, suckling, stress). These neurons may also target brain (e.g., limbic) regions via axon collaterals [8]. In addition to release from axon terminals as a

neurotransmitter, central release of OXT as a neuromodulator was shown to occur from dendrites and perikarya [1,9], explaining basal and stimulated levels in the

extracellular fluid (ECF) of distinct brain regions, as well as spatially and temporally precise point-to-point signaling. Central release can occur both independently of, and

simultaneously with, peripheral secretion. Together with the regional distribution and density of OXT receptor (OXTR), the amount of locally released OXT largely

determines the activity of the brain OXT system, thus contributing to the regulation of emotional and social behaviors [7]. Brain OXT availability can be further raised by

intranasal administration of OXT; exogenous OXT reaches both the cerebrospinal fluid (CSF) of brain ventricles and the systemic circulation [110,111]. From CSF, synthetic

neuropeptides may readily diffuse through the ventricular ependyma into the ECF according to the concentration gradient; blood–brain barrier (BBB) transport (Box 1) may,

to some extent, augment brain neuropeptide levels in a concentration-dependent manner [1]. Although exemplified for the brain OXT system in this cartoon, there is

substantial evidence for a comparable neurobiology of the brain arginine vasopressin (AVP) system with respect to neuronal synthesis, central release, peripheral secretion,

and external application [1]. Abbreviation: AN, accessory magnocellular nuclei.
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physiological stimuli trigger both central and peripheral
OXT release, including birth, suckling, sexual activity,
and various forms of stress, with essentially synergistic
behavioral and physiological actions of centrally (maternal
behavior, sexual behavior, anxiolysis, social preference, and
recognition) and peripherally (labor, milk ejection, orgasm)
released OXT, respectively [15,16]. Magnocellular OXT neu-
rons projecting to the posterior pituitary, but also targeting
limbic regions via axon collaterals [8], may explain such
coordinated release.

Although these findings speak in favor of plasma
OXT as being a global biomarker of central OXT
system activity, the temporal dynamics of central and
peripheral release may substantially differ in a stimulus-
dependent way. Moreover, various stressors have been
shown to trigger OXT (and AVP) release within hypo-
thalamic and limbic regions, whereas neuropeptide
secretion into blood remains virtually unchanged
[1,15,16].
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Accordingly, changes in neuropeptide concentrations in
human plasma, saliva, or urine in a behavioral context
need to be interpreted with caution. Uncertainties as to the
site and dynamics of central release, and whether altered
levels reflect causes or consequences of behavioral altera-
tions, limit their plausibility. In contrast to the separation
of central from peripheral compartments by the blood–
brain barrier (BBB) (Box 1), these neuropeptides may
readily diffuse between brain ECF and ventricular cere-
brospinal fluid (CSF) (Figure 1). Therefore, quantification
in the CSF provides at least a global measure of neuropep-
tide activity in the brain, and affords a more accurate
reflection of central release patterns [1]. Importantly, in
any body fluid, questions about the reliability of neuropep-
tide measurements must be raised. Until assays are
strictly validated and standardized to detect bioavailable
neuropeptide, interpretation of data (particularly from
commercial assays without extraction) remains vague at
best.



Box 1. OXT, AVP, and the blood–brain barrier (BBB)

The BBB prevents endogenous neuropeptides, such as OXT and

AVP, from crossing in physiologically relevant amounts. OXT/AVP

plasma levels are generally lower than those in the ECF, further

restricting diffusion from blood to brain. The separation of central

and peripheral compartments under physiological conditions

coevolved with the functional divergence of neuropeptide effects

in blood and brain. Indeed, there are primarily independent

physiological functions at peripheral (e.g., antidiuresis) and central

(socio-emotional behaviors) levels. In addition, coordinated and

possibly synergistic actions of peripheral and central neuropeptides

may occur following simultaneous release into both compartments

(e.g., during birth). Thus, instead of being merely a protective

structure, the BBB contributes to both independent and fine-tuned

coordinated neuropeptide regulation. However, it should be noted

that exogenous neuropeptides may reach the brain parenchyma

through the BBB in minute, but functionally significant, amounts (as

indicated in Figure 1).
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OXT and AVP: anxiety and social phobia
Brain OXT and AVP are important regulators of anxiety,
although usually in opposing directions. Once released in
brain regions involved in stress and anxiety regulation, for
example in response to anxiogenic stimuli [1,15,16], OXT
exerts anxiolytic effects and modulates neuronal functions
related to physiological stress responses, mainly at the
levels of the PVN and amygdala [8,17–21]. Particularly
intriguing is the reduction in emotional responsiveness
during periods of high activity of the endogenous OXT
system, such as during lactation [22] and sexual activity
[23,24]. Acute or chronic central administration of synthet-
ic OXT in rodents, thereby increasing neuropeptide avail-
ability in the ECF (Figure 1), confirmed the anxiolytic and
stress-protective effects in various experimental settings
both in females and males [25–28]. Moreover, the brain
OXT system seems to be important for fear expression and
extinction, as shown in a rodent model of cued fear condi-
tioning [8,29]. Behavioral data from transgenic mice lack-
ing either OXT or the OXTR provide further support for
involvement of the brain OXT system in anxiety regulation
[14,30]. The OXTR-mediated acute anxiolytic effect of OXT
within the PVN requires the intracellular activation of
signaling cascades, such as the mitogen-activated protein
kinase cascade, which may contribute to long-term behav-
ioral adaptations via gene regulation [12,20].

It is worth emphasizing that OXT exerts various pro-
social effects [7,31] which may, in particular, contribute to
its anxiolytic effects in a social context. Naturally occurring
social approach and social preference behavior was shown
to be strictly dependent on brain OXT in rats and mice, and
social anxiety prevents such behavior [32,33]. In a rodent
model of social defeat-induced social phobia, central
administration of OXT reversed social avoidance and
rescued social preference [33] (Figure 2). Thus, according
to our hypothesis, activation of the brain OXT system, for
example, by positive social stimuli or pharmacotherapy,
results in increased central OXT availability and a (local or
global) shift of the OXT–AVP balance towards the former,
thus resulting in reduced levels of general and social
anxiety (Figure 3).

In contrast to OXT, the brain AVP system mediates
anxiogenic effects, as shown by a variety of gain- and
loss-of-function studies on AVP and its AVPR1A and
AVPR1B subtypes. Specifically, central or peripheral
administration of AVPR antagonists, local antisense
targeting of AVPR1A, AVPR knockout mice, and adeno-
viral vector-induced AVPR1A upregulation [28,34–38]
have confirmed the anxiogenic effects of endogenous
AVP. In a rat model of high (HAB) versus low (LAB)
anxiety-related behavior, representing natural extremes
of trait anxiety, the AVP gene was identified as a candi-
date gene for inborn anxiety [39]. As exemplified in this
model, as well as in early-life stress approaches [40,41],
hyperactivity of the AVP system severely disturbs the
neuropeptide balance, thus shifting behavior along a
continuum towards hyperanxiety and passive coping
(Figure 3). Consequently, reinstatement of the OXT–
AVP balance, and of emotional behavior, could be
achieved by either loss-of-function approaches targeting
the AVP system [36] or, alternatively, by chronic OXT
treatment, as shown in HAB rats [4].

With respect to social anxiety, the AVPR1A of the mouse
medial amygdala was suggested to mediate prosocial beha-
viors, with an opposite, antisocial role for AVPR1B, em-
phasizing the potential utility of the AVPR1B antagonist
SSR149415 in patients with social anxiety or social phobia
[42]. However, an involvement of the OXT system cannot
entirely be excluded because SSR149415 has also been
shown to weakly bind to OXTR [13].

There is also general support for an anxiolytic effect of
OXT in humans. For example, nursing mothers with
higher OXT levels are more likely to describe positive mood
states and reduced anxiety [43,44]. By contrast, women
who were abused in childhood have lower OXT concentra-
tions in CSF and higher anxiety scores [45].

In a plethora of human studies, intranasal adminis-
tration of synthetic OXT is currently used to increase the
availability of OXT in the brain ECF and, consequently,
brain OXT system activity (Figure 1). Despite individual
variations in OXT effectiveness [46], these studies sup-
port the capacity of the neuropeptide to modulate anxi-
ety circuitries, including reduced [47] and enhanced [48]
amygdala reactivity to fearful faces in men and women,
respectively, indicating gender-specific modulation of
perceptual salience and the processing of social cues.
Whereas there appears to be little effect of nasal OXT
on trait anxiety in healthy men [49], OXT was shown to
attenuate anxiety and fear responses in social contexts
[50] ([5,51,52] for review). Moreover, in patients suffer-
ing from social anxiety disorder or autism, intranasal
OXT reduced several symptoms of social impairment
[53–56].

Supporting rodent studies, emotional effects of synthet-
ic AVP in humans also include increased anxiety and fear
responses. For example, autonomic and behavioral
responses to threatening faces were elevated upon intra-
nasal AVP [57]. Further, amygdala responses to similar
socio-emotional stimulation were found to be associated
with genetic variations of AVPR1A [58] (Table 1). Although
intranasal administration of AVP did not affect anxiety in
healthy men [59], AVPR1B antagonists were shown to
attenuate indices of anxiety and depression in animal
models and depressed individuals [37,60].
651
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Figure 2. Brain oxytocin (OXT) promotes social preference and reverses defeat-induced social phobia in rodents. (a) In the social preference test, social preference is

reflected by longer exploration of the small cage containing a conspecific (social stimulus) than an empty small cage (object stimulus). The naturally occurring social

preference is prevented by central administration of an OXT receptor (OXTR) antagonist (OXTR-A), but not of an arginine vasopressin receptor (AVPR) antagonist (AVPR1A-

A). (b) 30 min exposure to social defeat (20 min before social preference testing) prevents social preference and results in social avoidance in vehicle-treated rats. Social

phobia can be reversed by intracerebroventricular infusion of OXT 20 min before behavioral testing. *P < 0.01. Adapted, with permission, from [33].
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OXT, AVP, and depression-like behavior
Due to the high degree of comorbidity between anxiety and
depression disorders, common mediators are likely to un-
derlie both conditions. Indeed, in addition to its anxiolytic
effect, synthetic OXT was shown to shift stress-coping in
rodents towards a more active coping style, after either
central or peripheral administration, indicating antide-
pressive-like effects ([4,61,62] for review). Further, there
is preclinical and clinical evidence that OXT may also
contribute to the improvement of other depression-related
symptoms, including sexual dysfunctions [63,64], sleep
disturbances [65], and anhedonia ([4] for review).

Another phenomenon possibly related to both depres-
sion and central OXT is hippocampal neurogenesis, which
seems to be important for stress-coping and the buffering of
depressive behavior [66]. OXT, but not AVP, was recently
shown to stimulate neuronal growth and to rescue gluco-
corticoid- or stress-induced suppression of neurogenesis in
the hippocampus of adult rats [67].

In depressed patients, evidence for an altered OXT
system, as deduced from plasma and CSF levels, is limited
and inconsistent [4,68]. Although increased OXT mRNA
expression and OXT immunoreactivity were found in post-
mortem hypothalamic tissue from depressed patients [69],
several questions remain – for example, whether such
alterations represent causes or consequence of the disor-
der, and whether antidepressant treatment can normalize
such changes.

Similarly to anxiety, brain AVP appears to modulate
depression-like behavior in an opposite manner to OXT, in
other words, shifting it towards passive stress-coping.
Indeed, in the above-mentioned HAB rats, AVP overex-
pression in the PVN not only contributed to hyperanxiety
652
but also to a depression-like phenotype, which could be
normalized by long-term treatment with the antidepres-
sant paroxetine [70]. Analogously, both AVP and AVPR1A
mRNAs were found to be overexpressed, and the number of
AVP-expressing neurons increased in the PVN of de-
pressed patients [71,72]. Thus, shifting the neuropeptide
balance towards OXT by inhibition of brain AVP might be
beneficial also in depression (Figure 3). Accordingly, mod-
ulators of AVPR activity are potential therapeutic tools,
such as the AVPR1B antagonist SSR149415 with anxio-
lytic, antidepressant, and stress-buffering effects
[37,42,73]. However, to date none of these drugs has
reached the market [38].

Mechanisms of effects of OXT and AVP related to
anxiety and depression
Multiple brain neurotransmitter and neuromodulator sys-
tems are presumed to interact at various brain levels to
shape individual variations in emotionality. The mecha-
nisms underlying anxiolytic and antidepressive effects of
OXT are likely to include interactions with monoaminergic,
in particular the serotonergic, and corticotropin-releasing
factor (CRF) systems, both of which have been implicated in
anxiety disorders and depression [2,72,74]. A subpopulation
of OXTR-expressing serotonergic neurons exists within the
raphe nucleus [75]; in turn, stimulation of serotonin release
activates hypothalamic OXT neurons [76]. Moreover, in
female rhesus monkeys, both serotonin and OXT are poten-
tial targets of estradiol, and as such are likely to mediate its
prosocial and anxiolytic effects [77,78]. Thus, OXT-based
therapy might be an additional option to reverse the postu-
lated deficits in serotonergic (and possibly noradrenergic)
neurotransmission in depressed individuals, the more
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Figure 3. Hypothetical model depicting the balance in brain oxytocin (OXT) and
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regulation from mental health to psychopathology. (a) Although brain OXT acts as
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neuropeptide balance is determined by genetic, epigenetic, physiological, social,
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psychopharmacotherapy (e.g., by administration of selective receptor agonists

or antagonists). Shifting the OXT–AVP balance to the left, for example, by genetic

risk factors (Table 1) and/or by negative social cues early in life, resulting in

reduced OXT system activity, is probably associated with increased anxiety-related

behavior and passive stress-coping, thus increasing the risk of psychopathology. A

neuropeptide imbalance can be reflected by reduced OXT and elevated AVP

system activity, respectively, or both. Thus, shifting the OXT–AVP balance does not

necessarily mean reciprocal changes of both neuropeptide systems.

Pharmacologically, the neuropeptide balance may be shifted towards the right

by intranasal application of synthetic OXT and increased brain OXT availability

(Figure 1), thus promoting the anxiolytic, anti-depressive, stress-protective, and

prosocial effects of the brain OXT system. (b) Examples from animal and human

studies for extremes in behavioral phenotypes at the ends of the anxiety/stress-

coping continuum; the middle range represents species-specific phenotypic

variation.
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because some effects of selective serotonin reuptake inhibi-
tors (SSRI) are thought to be mediated by OXT [77]. Sup-
porting this view, polymorphisms in the serotonin
transporter and OXTR genes have recently been shown to
interact in healthy men and women, thereby influencing
their vulnerability for psychopathology [79].

In addition to AVP, hyperactivity of the brain CRF
system has been linked to both passive stress-coping in
rodents, and stress-related disorders such as depression
[2,60,80]. In support, CRF and CRF receptor 1 genes are
overexpressed in the PVN of both HAB rats [39,70] and
depressed patients [71,72]. OXT actions may partly be
mediated via effects on hypothalamic CRF neurons [25],
which express OXTR [81]. Thus, following its activation by
social or rewarding stimuli, endogenous OXT may contrib-
ute to the attenuation of anxiogenic, depressive, and stress
effects of CRF.
Studies on neuropeptide mechanisms have recently
been complemented by the demonstration that OXT and
AVP modulate anxiety responses and fear extinction in the
central amygdala of rats in opposite manners, and target
distinct neuronal populations. Following local release,
OXT attenuated fear by acting on two major populations
of neurons of an inhibitory network, one inhibited by OXT,
but excited by AVP (via AVPR1A), the other being excited
by OXT but unresponsive to AVP [19,21]. These findings
suggest important functional implications of neuropeptide
balance not only at the behavioral but also neuronal net-
work levels.

Similar mechanisms of OXT action are expected to
underlie the emotional and anti-stress effects seen in a
continuously rising number of human neuroimaging stud-
ies after intranasal administration (Figures 1 and 3). For
example, in OXTR risk allele carriers (rs53576A; Table 1)
who display deficits in socio-behavioral domains, altera-
tions in hypothalamic-amygdala coupling were found [82].
Along the same lines, intranasal OXT has been shown to
potently alter activation of the amygdala and its coupling
to brainstem regions in response to social and threatening
stimuli [48,49]. Intranasal administration of AVP has been
found to modulate the activity and connectivity patterns
within prefrontal cortex-amygdala regions, circuitries that
are implicated in threat perception, the processing of
anxiety/fear, and in social behaviors [59].

OXT, AVP, and social behaviors
According to the social brain hypothesis, the need to adapt
behaviorally to increasing social complexity has substan-
tially contributed to the development of brain mass, cogni-
tive abilities, emotions, and language [83]. Brain OXT and
AVP, as well as their evolutionary ancestors, are major
players in the complex orchestra shaping sociality, and this
impacts upon both anxiety and stress-coping [3,7,31]. Fol-
lowing their central release, both OXT and AVP promote
important aspects of social behavior, including social pref-
erence (OXT) [33], maternal care, and aggression (OXT and
AVP) [84,85], sexual behavior (OXT) [63], pair-bonding in
monogamous species (OXT and AVP) [31,86,87], social
cognition (OXT and AVP) [88–90], and inter-male aggres-
sion (AVP) [91,92]. It is of note in this context that the high
levels of sociability observed in rats after 3,4 methylene-
dioxymethamphetamine (ecstasy) administration were
shown to be OXT-mediated [93].

In contrast to mostly opposite effects of OXT and AVP on
anxiety and depression-related behavior, as discussed
above, social behaviors are often regulated in the same
direction, as seen, for example, in the context of pair-
bonding in monogamous voles (although in a sex- and
region-dependent manner) [31], maternal behavior [85],
and social memory [88,90]. However, only the brain OXT
system appears to be essential for social preference and for
the avoidance of social anxiety as a prerequisite for social
interaction, because AVP lacks such effects [33] (Figure 2).
Also, the facilitation of social fear extinction by OXT seems
to be a neuropeptide-specific effect [94].

Human studies confirm multiple prosocial effects of both
OXT and AVP after intranasal administration in healthy
subjects, as well as in patients with emotional or social
653



Table 1. Examples of genetic polymorphisms in genes encoding OXTR, AVPR1A, and AVP that are associated with emotional and
social phenotypesa

Gene/polymorphism Species Associated phenotypes Refs

Oxytocin receptor

rs53576

(SNP in the 3rd intron

of the OXTR gene)

or haplotype including

rs53576

Humans Optimism, self-esteem, depression [124]

Social support seeking [117]

Empathy, stress reactivity [125]

Sensitive parenting [126]

Prosocial temperament; variations

in hypothalamic, amygdala/cingulate

structure and function

[82]

Emotional loneliness [127]

Behavioral manifestations of prosociality [128]

Autism [129]

rs2254298

(SNP in the 3rd intron

of the OXTR gene)

Humans Volume, function, and connectivity of

hypothalamus and limbic brain regions;

ethnically and sex-dependent effects

[113,130]

Susceptibility to anxiety, depression, autism [131,132]

Vasopressin receptor 1A

Length variation in tandem

repeats in promoter region

Voles Monogamy, partner preference; modified

receptor expression and distribution;

phenotypic confirmation in transgenic

mice and rats

[31]

RS1, RS3

(polymorphic microsatellite

repeats near the promoter)

Humans Autism, personality traits; differential

activation of amygdala

[58]

Altruism, trust; levels of AVPR1A mRNA

in post-mortem hippocampi

[133]

Partner bonding [134]

Haplotypes consisting of

RS1, RS3, and an intronic

microsatellite

Humans Autism [135]

Vasopressin

Deletion in LAB promoter Mice (F2 panel

from HAB �
LAB crosses)

Anxiety-related behavior [136]

aExamples were selected based on reproducibility and functional confirmation.
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dysfunctions [5,57,95,96]. In this context, OXT is particu-
larly prominent in the processing of positive social stimuli
[49,52,97,98]. Opposing effects of OXT and AVP on social
recognition and socio-emotional perception have been de-
scribed, with intranasal OXT elevating [48] and AVP
impairing [99] mind-reading, respectively. Moreover, neu-
ropeptide effects are nuanced, with a sizeable minority of
human studies showing that OXT can even produce anti-
social effects under particular conditions [46].

Influence of the social environment on brain OXT and
AVP activity
Positive and rewarding social stimuli (such as mother–
offspring or socio-sexual interactions, and social support),
and negative social experiences (such as defeat, subordina-
tion, or interruption of maternal care early in life), differen-
tially affect both neuropeptide systems. This is reflected by
alterations in the expression, release, and receptor binding
of OXT/AVP within limbic regions and, partly, in plasma
OXT or AVP concentrations [15,41,42,100–102]. We propose
that in this way the social environment may contribute to
the modulation of the activity of the brain OXT and AVP
systems, with positive stimuli being likely to shift the
balance towards OXT (Figure 3). Indeed, rodent and human
studies suggest that reinforcing positive social interactions
is generally beneficial for mental health, and improves
emotional stability and concomitantly protects against
654
psychopathologies [7]. Many other positive health effects
of social support were described in animal and human
studies, for example on immunological and cardiovascular
functions [7,103,104]. It is noteworthy that even intense
social interaction of humans with their pets leads to elevated
plasma OXT [105], and this may give rise to some of the
beneficial effects described above.

Conversely, interrupted or lack of social interactions –
anticipated as psychosocial stress – have been associated
with increased anxiety, especially social anxiety, or depres-
sion-like behavior in rodents [33,101,106]. Indeed, psycho-
social stressors including adverse social experiences early
in life cause alterations in the OXT and AVP systems
[40,42,101,107–109]. Similarly, in humans, emotional ne-
glect or child maltreatment increase the risk for mental
disorders and, under particular conditions, have also been
shown to be accompanied by lower OXT concentrations in
CSF in adulthood [45].

Overall, whereas activation of the OXT system with
simultaneous inhibition of the AVP system might be a
promising therapeutic option to treat anxiety disorders
and depression due to mostly opposite emotional effects
[4,54,55] (Figure 3), the impact of neuropeptide balance for
social behavior is less clear. Particularly in the case of
unidirectional neuropeptide effects (e.g., on social cogni-
tion), the situation is further complicated by potential
OXT/AVP (including antagonist [13]) cross-reactivity,
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particularly at high dosages, due to the high extent of
receptor homology [14]. Whether this is relevant for human
studies remains to be shown, given the low neuropeptide
dose that is likely to reach the brain compartment after
intranasal administration [110,111]. In any case, the func-
tional and structural overlap of the OXT and AVP systems
emphasizes the complexity of the pharmacology involved
in developing neuropeptide-based selective psychophar-
macotherapies.

Gender-dependent effects of OXT and AVP
An important aspect of neuropeptide functions that balance
emotional behavior is the sexual dimorphism of OXT/AVP
systems, and this may underlie the higher incidence of
anxiety disorders and depression in women, and antisocial
behavior and autism in males [112]. Estrogens upregulate
OXT synthesis within the PVN and regulate OXTR expres-
sion in the amygdala via estrogen a- and b-receptor actions,
respectively. Sexually dimorphic amygdala reactivity to
intranasal OXT [48], and gender-dependent impact of ge-
netic variations in the OXTR upon hypothalamic and amyg-
dala volume and functional coupling [82,113,114], further
support the hypothesis of sex-dependent activity of the brain
OXT system.

In contrast to OXT, AVP is mainly influenced by testos-
terone via androgen, but also estrogen, receptor-mediated
mechanisms [115]. It remains to be shown, to which extent
such mechanisms contribute to sexually dimorphic effects
of intranasal AVP on human social communication and
strategies in stressful contexts [57].

Genes of the OXT and AVP systems in association
studies
The data described so far, suggesting reliable OXT and AVP
effects on socio-emotional behaviors, stand in contrast to
how little is currently known about candidate genes under-
lying such behaviors and psychiatric disorders [116]. One
approach that can shed light on the genes involved is to
associate polymorphic variations, particularly single nucle-
otide polymorphisms (SNPs), with variations in emotional
and social behaviors. However, genetic associations gener-
ally raise issues related to replicability and the functional
effects of SNPs. It is, for instance, generally unknown how
polymorphic variations translate into differential expres-
sion and availability of brain neuropeptides and their recep-
tors. Therefore, the selected examples presented in Table 1
include only polymorphisms (i) that have repeatedly been
confirmed to impact upon socio-emotional phenotypes, or (ii)
with functional/structural correlates based on expression
and neuroimaging genetics approaches.

The neuropeptide variants that have been most exten-
sively studied in their relation to behavioral traits are
located in the OXTR and AVPR genes (Table 1). For exam-
ple, the A allele of rs53576 of the human OXTR gene (AA, AG
genotypes relative to G/G homozygotes) and haplotypes
including this SNP confer particular risks for deficits in
socio-emotional domains. Compared with their receptors,
however, less is known about behavioral implications of
genetic variations in neuropeptide genes (Table 1).

Generally, single-gene associations are ultimately lim-
ited in their ability to explain large portions of variability
in socio-emotional behaviors [3]. Their complexity is fur-
ther enhanced by gene–gene [79] and gene–environment
[117] interactions, including epigenetic modifications
shown to modify AVP expression by early-life stress in
mice [41], and OXTR deficiency in autism [118]. Such
modifications are particularly capable of complementing
association studies, linking them to an environmental
context [119].

Thus, both genetic and epigenetic variations are likely
to contribute to the activity of the brain OXT and AVP
systems shaping individual anxiety- and depression-relat-
ed behaviors and, consequently, the risk for psychopathol-
ogy (Figure 3).

Neuropeptide balance in the regulation of emotional
behaviors
The opposing effects of brain OXT and AVP systems on
anxiety and depression-related neuronal functions and
behaviors, as discussed above, support our hypothesis that
a dynamic balance of the activities of the brain OXT and
AVP systems impacts upon emotional behaviors along a
continuum from mental health to psychopathology
(Figure 3). Accordingly, psychiatric disorders can be con-
sidered as extremes of quantitative dimensions at the
negative end of a given continuum [120], explaining
why, for example, pathological anxiety may evolve from
normal anxiety [121]. We hypothesize that this shift to-
wards psychopathology is, at least in part, due to an OXT–
AVP imbalance determined by negative environmental, in
particular negative social, stimuli, in concert with genetic
and epigenetic (risk) factors. Conversely, based on findings
that the brain OXT system can be activated by social
stimuli, we further extend this model and hypothesize that
positive social interactions have the potential to shift the
neuropeptide balance towards OXT, thereby attenuating
anxiety- and depression-related behaviors (Figure 3).

Importantly, our hypothesis of an OXT–AVP balance
primarily linked to emotional behaviors does not mean that
increased signaling of one neuropeptide is necessarily
linked to reduced signaling of the other (although such
regulatory capacity has recently been shown, both at neu-
ropeptide ligand [122] and receptor [123] levels). Instead, it
suggests that hypoactivity of OXT and hyperactivity of AVP,
alone or together, may underlie a shift to the left along the
behavioral continuum (Figure 3). In this case, we speculate
that, in addition to appropriate stimulation of the endoge-
nous system, combined psychopharmacotherapy of both an
OXTR agonist and AVPR antagonists may have the poten-
tial to synergistically improve psychopathological behavior.

Social dysfunctions are key symptoms not only of social
anxiety disorders, but also of several psychopathologies,
including major depression, post-traumatic stress disor-
ders, schizophrenia, and autism. Because OXT and AVP
modulate multiple aspects of both emotionality and social-
ity, we further propose that a neuropeptide imbalance is
also likely to contribute to social deficits accompanying
psychopathologies.

Concluding remarks
Individual variations in anxiety- and depression-related
behaviors are determined by the dynamic interplay of
655



Box 2. Outstanding questions

Despite accumulating knowledge about the neurobiology of brain

OXT and AVP systems from preclinical and clinical studies, several

questions remain. For example:

� How do axonally versus dendritically released neuropeptides

locally interact to specifically regulate socio-emotional behaviors?

� Which social stimuli and epigenetic mechanisms, especially early

in life, modulate regional OXT/AVP gene expression and release

and, consequently, shift the OXT–AVP balance?

� Which neuropeptide receptor-mediated intracellular signaling

cascades determine rapid and long-term OXT and AVP neuronal

and behavioral effects?

� How do individual variations in neuropeptide receptor genes

contribute to the endogenous OXT–AVP balance, and to the

response of an individual to social stimuli and intranasal OXT?

� Which reliable biomarkers can be used, in addition to plasma/CSF

neuropeptide levels and genetic risk factors, to assess central

neuropeptide activities, to diagnose an OXT–AVP imbalance, and

to select patients for psychopharmacotherapy?

� Despite encouraging effects of intranasal administration of

synthetic OXT, transport routes to the brain, the extent and

duration of behavioral effects, and acute or long-lasting interac-

tions with the endogenous system are unknown. For example,

does the rise in exogenous OXT trigger or instead inhibit

endogenous neuropeptide activity?
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theoretically unlimited combinations of underlying genet-
ic, epigenetic, environmental, and social (risk) factors.
Based on preclinical and clinical evidence, we propose that
each of these factors, alone or in concert, also contributes to
individual differences in central OXT/AVP release pat-
terns or receptor binding, thereby modulating their bal-
ance and thus, in turn, emotionality. Accordingly,
neuropeptide imbalance and a shift of emotional behaviors
towards psychopathology (Figure 3) may be corrected by
stimuli that facilitate and inhibit central release and
actions of OXT and AVP, respectively, in a locally and
temporally adequate manner. Although future studies are
required to reveal the characteristics of appropriate sti-
muli in more detail (Box 2), present knowledge suggests
that positive social stimuli may contribute to activation of
the OXT system, thus rebalancing aberrant neuropeptide
signaling. Such therapeutic options, in combination with
psychopharmacotherapy, seem to be a particularly prom-
ising approach for risk-allele carriers (Table 1) living in an
adverse social environment. However, to further qualify
the selection of potentially responsive patients for treat-
ment, reliable biomarkers reflecting the dynamics of the
endogenous OXT–AVP balance need to be identified. Only
then can a combination of specific stimuli and intranasal
application of OXT agonists and/or AVPR antagonists
potentially improve emotional behaviors and overall men-
tal health.
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