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More than 35 million people worldwide — 5.5 million in the 
United States — have Alzheimer’s disease, a deterioration of memory and 
other cognitive domains that leads to death within 3 to 9 years after diag-

nosis. Alzheimer’s disease is the most common form of dementia, accounting for 
50 to 56% of cases at autopsy and in clinical series. Alzheimer’s disease combined 
with intracerebral vascular disease accounts for another 13 to 17% of cases.

The principal risk factor for Alzheimer’s disease is age. The incidence of the 
disease doubles every 5 years after 65 years of age, with the diagnosis of 1275 new 
cases per year per 100,000 persons older than 65 years of age.1 Data on centenarians 
show that Alzheimer’s disease is not necessarily the outcome of aging2; neverthe-
less, the odds of receiving the diagnosis of Alzheimer’s disease after 85 years of 
age exceed one in three. As the aging population increases, the prevalence will 
approach 13.2 to 16.0 million cases in the United States by mid-century.3

Many molecular lesions have been detected in Alzheimer’s disease, but the over-
arching theme to emerge from the data is that an accumulation of misfolded 
proteins in the aging brain results in oxidative and inflammatory damage, which 
in turn leads to energy failure and synaptic dysfunction.

Pro tein A bnor m a li ties in A l zheimer’s  Dise a se

β-Amyloid

Cerebral plaques laden with β-amyloid peptide (Aβ) and dystrophic neurites in 
neocortical terminal fields as well as prominent neurofibrillary tangles in medial 
temporal-lobe structures are important pathological features of Alzheimer’s dis-
ease. Loss of neurons and white matter, congophilic (amyloid) angiopathy, in-
flammation, and oxidative damage are also present.

Aβ peptides are natural products of metabolism consisting of 36 to 43 amino 
acids. Monomers of Aβ40 are much more prevalent than the aggregation-prone and 
damaging Aβ42 species. β-amyloid peptides originate from proteolysis of the amy-
loid precursor protein by the sequential enzymatic actions of beta-site amyloid 
precursor protein–cleaving enzyme 1 (BACE-1), a β-secretase, and γ-secretase, a pro-
tein complex with presenilin 1 at its catalytic core4 (Fig. 1). An imbalance between 
production and clearance, and aggregation of peptides, causes Aβ to accumulate, 
and this excess may be the initiating factor in Alzheimer’s disease. This idea, 
called the “amyloid hypothesis,” is based on studies of genetic forms of Alzheimer’s 
disease, including Down’s syndrome,5 and evidence that Aβ42 is toxic to cells.6,7

Aβ spontaneously self-aggregates into multiple coexisting physical forms. One 
form consists of oligomers (2 to 6 peptides), which coalesce into intermediate as-
semblies8,9 (Fig. 1). β-amyloid can also grow into fibrils, which arrange themselves 
into β-pleated sheets to form the insoluble fibers of advanced amyloid plaques.

Soluble oligomers and intermediate amyloids are the most neurotoxic forms of 
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Aβ.10 In brain-slice preparations, dimers and 
trimers of Aβ are toxic to synapses.11,12 The se-
verity of the cognitive defect in Alzheimer’s dis-
ease correlates with levels of oligomers in the 

brain, not the total Aβ burden.13 Neuronal activa-
tion rapidly increases Aβ secretion at the syn-
apse, a process tied to the normal release of vesi-
cles containing neurotransmitters. Physiologic 
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Figure 1. Processing of Amyloid Precursor Protein.

In Panel A, cleavage by α-secretase interior to the β-amyloid peptide (Aβ) sequence initiates nonamyloidogenic processing. A large am-
yloid precursor protein (sAPPα) ectodomain is released, leaving behind an 83-residue carboxy-terminal fragment. C83 is then digested by 
γ-secretase, liberating extracellular p3 and the amyloid intracellular domain (AICD). Amyloidogenic processing is initiated by β-secretase 
beta-site amyloid precursor protein–cleaving enzyme 1 (BACE-1), releasing a shortened sAPPα. The retained C99 is also a γ-secretase 
substrate, generating Aβ and AICD. γ-Secretase cleavage occurs within the cell membrane in a unique process termed “regulated intra
membranous proteolysis.” sAPPα and sAPPβ are secreted APP fragments after α-secretase and β-secretase cleavages, respectively. AICD 
is a short tail (approximately 50 amino acids) that is released into the cytoplasm after progressive ε-to-γ cleavages by γ-secretase. AICD 
is targeted to the nucleus, signaling transcription activation. Lipid rafts are tightly packed membrane micro-environments enriched in 
sphingomylelin, cholesterol, and glycophosphatidylinositol (GPI)–anchored proteins. Soluble Aβ is prone to aggregation. In Panel B, left 
inset, protofibrils (upper) and annular or porelike profiles (lower) are intermediate aggregates. (Photomicrographs courtesy of Hilal 
Lashuel, Ph.D.) In the right inset, self-association of 2 to 14 Aβ monomers into oligomers is dependent on concentration (left immuno-
blot). In the right immunoblot, oligomerization is promoted by oxidizing conditions (lane 2) and divalent metal conditions (lane 3). 
(Immunoblots courtesy of Hongwei Zhou, Ph.D.)
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levels of synaptic Aβ may dampen excitatory trans-
mission and prevent neuronal hyperactivity.14

The proteases neprilysin and insulin-degrad-
ing enzyme regulate steady-state levels of Aβ. 
Neprilysin, a membrane-anchored zinc endopep-
tidase, degrades Aβ monomers and oligomers.15 
A reduction in neprilysin causes accumulation of 
cerebral Aβ.16 Insulin-degrading enzyme, a thiol 
metalloendopeptidase, degrades small peptides 
such as insulin and monomeric Aβ.17 In mice, 
deletion of insulin-degrading enzyme reduces Aβ 
degradation by more than 50%.18 Conversely, 
overexpression of neprilysin or insulin-degrading 
enzyme prevents plaque formation.19

Clinical trials of a γ-secretase inhibitor (LY450139) 
(ClinicalTrials.gov number, NCT00765115),20 aggre-
gation blockers, vaccination with Aβ, and mono-
clonal antibodies against various Aβ epitopes are 
in progress. The antibodies bind Aβ, thereby trig-
gering complement and Fc-receptor–mediated 
phagocytosis by microglia, or enhance clearance 
of Aβ, or both.21 Vaccination in a phase 2a trial 
(NCT00021723)22 resulted in encephalitis,23 and 
follow-up of immunized patients showed no cog-
nitive or survival benefit despite diminution of 
plaques.24 A phase 2 trial of passive immunization 
resulted in vasogenic cerebral edema in some pa-
tients (NCT00112073). Phase 3 trials of two mono-
clonal antibodies against Aβ (NCT00574132 and 
NCT00904683) and of 10% intravenous immune 
globulin are under way (NCT00818662).

Tau

Neurofibrillary tangles, which are filamentous in-
clusions in pyramidal neurons, occur in Alzhei
mer’s disease and other neurodegenerative dis-
orders termed tauopathies.25 The number of 
neurofibrillary tangles is a pathologic marker of 
the severity of Alzheimer’s disease. The major 
component of the tangles is an abnormally hyper-
phosphorylated and aggregated form of tau. 
Normally an abundant soluble protein in axons, 
tau promotes assembly and stability of microtu-
bules and vesicle transport. Hyperphosphorylated 
tau is insoluble, lacks affinity for microtubules, 
and self-associates into paired helical filament 
structures (Fig. 2). Enzymes that add and those 
that remove phosphate residues regulate the ex-
tent of tau phosphorylation.26

Like Aβ oligomers, intermediate aggregates of 
abnormal tau molecules are cytotoxic27 and im-
pair cognition.28,29 Insoluble helical filaments 

may be inert, however, since decreases in axonal 
transport and neuron number are independent 
of the burden of neurofibrillary tangles.30 These 
helical filaments sequester toxic intermediate tau 
species, a process that may be protective.31

More than 30 mutations of Tau on chromo-
some 17 have been detected in frontotemporal 
dementia with parkinsonism.32 By contrast, Tau 
mutations do not occur in Alzheimer’s disease, 
and the extent of neuron loss is out of propor-
tion to the number of neurofibrillary tangles.33 
Nevertheless, increased levels of phosphorylated 
and total tau in the cerebrospinal fluid correlate 
with reductions in scores on cognitive examina-
tions.34 Elevated levels of phosphotau amino acids 
T181, T231, and total tau in the cerebrospinal 
fluid together constitute a biomarker test with 
good accuracy for predicting incipient Alzhei
mer’s disease in patients with mild cognitive im-
pairment.35 Experimental evidence indicates that 
Aβ accumulation precedes and drives tau aggre-
gation.36-38 Moreover, Aβ-induced degeneration 
of cultured neurons and cognitive deficits in mice 
with an Alzheimer’s disease–like illness require 
the presence of endogenous tau.39,40

Increased oxidative stress, the impaired pro-
tein-folding function of the endoplasmic reticu-
lum, and deficient proteasome-mediated and au-
tophagic-mediated clearance of damaged proteins 
— all of which are also associated with aging 
— accelerate the accumulation of amyloid and 
tau proteins in Alzheimer’s disease.41,42 Agents 
capable of counteracting these changes are not 
available, but trials of small-molecule inhibitors 
of β-amyloid (e.g., scylloinositol) (NCT00568776) 
and tau oxidation and aggregation (e.g., methyl-
ene blue) (NCT00568776) are under way.43 Poly-
phenolic extracts from grape seeds (e.g., resvera-
trol), which stimulate aging-suppressor genes, 
also show promise as therapeutic agents.44

The S y na pse in A l zheimer’s 
Dise a se

Synaptic Failure

Alzheimer’s disease may be primarily a disorder 
of synaptic failure.45 Hippocampal synapses be-
gin to decline in patients with mild cognitive im-
pairment (a limited cognitive deficit often pre-
ceding dementia) in whom remaining synaptic 
profiles show compensatory increases in size.46 
In mild Alzheimer’s disease, there is a reduction 
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Figure 2. Tau Structure and Function.

Four repeat sequences (R1-R4) make up the microtubule-binding domain (MBD) of tau. Normal phosphorylation of tau occurs on serine 
(S; inset, above horizontal bar) and threonine (T; inset, below horizontal bar) residues, numbered according to their position in the full tau 
sequence. When followed by proline (P), these amino acids are phosphorylated by glycogen synthase kinase 3 (GSK-3β), cyclin-depen-
dent kinase (cdk5) and its activator subunit p25, or mitogen-activated protein kinase (MAPK). Nonproline-directed kinases — Akt, Fyn, 
protein kinase A (PKA), calcium–calmodulin protein kinase 2 (CaMKII), and microtubule affinity-regulating kinase (MARK) — are also 
shown. KXGS (denoting lysine, an unknown or other amino acid, glycine, and serine) is a target motif. Hyperphosphorylated sites specif-
ic to paired helical filament tau in Alzheimer’s disease tend to flank the MBD. Tau binding promotes microtubule assembly and stability. 
Excessive kinase, reduced phosphatase activities, or both cause hyperphosphorylated tau to detach and self-aggregate and microtubules 
to destabilize.
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of about 25% in the presynaptic vesicle protein 
synaptophysin.47 With advancing disease, synaps-
es are disproportionately lost relative to neurons, 
and this loss is the best correlate with demen-
tia.48-50 Aging itself causes synaptic loss,51 which 
particularly affects the dentate region of the hip-
pocampus.52

Basal transmission of single impulses and 
“long-term potentiation,” an experimental indica-
tor of memory formation at synapses, are im-
paired in plaque-bearing mice with Alzheimer’s 
disease and after Aβ peptide has been applied to 
brain slices.11,53 Subsequent to this impairment, 
signaling molecules important to memory are in-
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Figure 3. Synaptic Dysfunction in Alzheimer’s Disease.

Synaptic loss correlates best with cognitive decline in Alzheimer’s disease. A control synapse is shown at the top of the 
figure. At the bottom of the figure, an “Alzheimer’s disease synapse” depicting the pleiotropic effects of the β-amyloid 
peptide (Aβ) is shown. Rings represent synaptic vesicles. Experimental application and expression of Aβ, especially 
oligomers, impair synaptic plasticity by altering the balance between long-term potentiation (LTP) and long-term de-
pression (LTD) and reducing the numbers of dendritic spines. At high concentrations, oligomers may suppress basal 
synaptic transmission. Aβ facilitates endocytosis of receptors of N-methyl-d-aspartate (NMDAr) and α-amino-3-
hydroxy-5-methyl-4-isoxazole propionic acid (AMPAr). Aβ also binds to the receptors of p75 neurotrophin (p75NTr) 
and brain-derived neurotrophic factor (the BDNF receptor, also known as the tyrosine kinase B receptor [trkBr]), ex-
acerbating a situation in which levels of BDNF and nerve growth factor (NGF) are already suppressed. Aβ impairs 
nicotinic acetylcholine (ACh) receptor (nAChr) signaling and ACh release from the presynaptic terminal. Numbers of 
hippocampal synapses decrease in mild cognitive impairment in which remaining synaptic profiles show compensa-
tory increases in size. APP denotes amyloid precursor protein, pCaMKII phosphorylated calcium–calmodulin–depen-
dent protein kinase 2, pCREB phosphorylated cyclic AMP response-element-binding protein, trkAr tyrosine kinase A 
receptor, and VGCC voltage-gated calcium channel.
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hibited. Disruptions of the release of presynaptic 
neurotransmitters and postsynaptic glutamate-
receptor ion currents54,55 occur partially as a result 
of endocytosis of N-methyl-D-aspartate (NMDA) 
surface receptors56 and endocytosis of α-amino-
3-hydroxy-5-methyl-4-isoxazole propionic acid 
surface receptors57 (Fig. 3). The latter further 
weakens synaptic activity by inducing a lasting 
reduction in currents after a high-frequency stim-
ulus train. A similar shift in the balance be-
tween potentiation and depression in synapses 
occurs with normal aging. Intraneuronal Aβ can 
trigger these synaptic deficits even earlier.58

Depletion of Neurotrophin  
and Neurotransmitters

Neurotrophins promote proliferation, differentia-
tion, and survival of neurons and glia, and they 
mediate learning, memory, and behavior. The 
normally high levels of neurotrophin receptors in 
cholinergic neurons in the basal forebrain are se-
verely reduced in late-stage Alzheimer’s disease 
(Fig. 3). Injection of nerve growth factor can res-
cue basal neurons in animal models,59 and a 
phase 1 trial of treatment with the NGF gene in 
Alzheimer’s disease showed improvement in cog-
nition and brain metabolism.60 In Alzheimer’s 
disease and mild cognitive impairment, levels of 
brain-derived neurotrophic factor (BDNF), a mem-
ber of the neurotrophin family, are depressed,61 
a finding reproduced experimentally with Aβ42 
oligomers.62 BDNF treatment in rodents and non-
human primates supports neuronal survival, syn-
aptic function, and memory,63 suggesting that 
BDNF replacement is another option for the treat-
ment of Alzheimer’s disease.64

The deficiency of cholinergic projections in 
Alzheimer’s disease has been linked to the build-
up of Aβ and tau. Presynaptic α-7 nicotinic ace-
tylcholine receptors are essential for cognitive 
processing, and their levels increase in early Alz
heimer’s disease,65 before decreasing later.66 Ex-
perimental studies show that Aβ binds to α-7 
nicotinic acetylcholine receptors, impairing the 
release of acetylcholine and maintenance of long-
term potentiation.67 The level of muscarinic ace-
tylcholine receptors, or receptor coupling, is re-
duced in the brains of patients with Alzheimer’s 
disease. Pharmacologic stimulation of the post-
synaptic muscarinic type 1 (M1) acetylcholine 
receptors activates protein kinase C, favoring 
processing of amyloid precursor protein that 
does not yield amyloid.68 Furthermore, activation 

of nicotinic acetylcholine receptors or M1 receptors 
limits tau phosphorylation.69,70 Although cholin-
esterase inhibitors improve neurotransmission and 
provide mild palliative relief in Alzheimer’s dis-
ease, they lose efficacy over time. The use of 
agonists and modulators of α-7 nicotinic acetyl-
choline receptors is under investigation. Clinical 
trials of selective M1 agonists have shown im-
provements in cognition71 and reduced Aβ levels 
in the cerebrospinal fluid,72 but these agents are 
toxic.

Mi t o chondr i a l Dysfunc tion

Aβ is a potent mitochondrial poison, especially 
affecting the synaptic pool.73 In Alzheimer’s dis-
ease, exposure to Aβ inhibits key mitochondrial 
enzymes in the brain and in isolated mitochon-
dria.74,75 Cytochrome c oxidase is specifically at-
tacked.76 Consequently, electron transport, ATP 
production, oxygen consumption, and mitochon-
drial membrane potential all become impaired. 
The increase in mitochondrial superoxide radical 
formation and conversion into hydrogen peroxide 
cause oxidative stress, release of cytochrome c, 
and apoptosis (Fig. 4).

The accumulation of Aβ within structurally 
damaged mitochondria isolated from the brains 
of patients with Alzheimer’s disease77 and trans-
genic brains76 is consistent with other evidence 
of intraneuronal Aβ in Alzheimer’s disease.78 
Alcohol dehydrogenase is one such mitochondrial-
binding target of Aβ.79 Similar changes occur 
in normal cells that have been repopulated with 
mitochondrial DNA (mtDNA) from patients 
with sporadic Alzheimer’s disease.80 Both in Alz
heimer’s disease and in the normal aging pro-
cess, mtDNA sustains high levels of oxidative 
damage.77 This instability and the irreparability 
of the brain’s mitochondrial genome allow the 
gradual accumulation of mtDNA mutations.81 
Fragmentation (or fission) of mitochondria from 
the oxidation of a dynamin-like transporter pro-
tein may cause synapse loss in Alzheimer’s 
disease.82 The antihistamine dimebolin hydro-
chloride, a putative mitochondrial stimulant, has 
been reported to improve cognition and behav-
ior in patients with mild-to-moderate Alzhei
mer’s disease.83

Oxidative Stress

Dysfunctional mitochondria release oxidizing free 
radicals, and in Alzheimer’s disease and the nor-
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mal aging brain, they cause considerable oxida-
tive stress.84,85 Experimental models show that 
markers of oxidative damage precede pathologi-
cal changes.86 Aβ, a potent generator of reactive 
oxygen species87 and reactive nitrogen species,88 

is a prime initiator of this damage. The receptor 
for advanced glycation end products mediates 
Aβ’s pro-oxidant effects on neural, microglial, 
and cerebrovascular cells.89 Mitochondrial hydro-
gen peroxide readily diffuses into the cytosol to 
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Figure 4. Oxidative Stress and Mitochondrial Failure.

A β-amyloid peptide (Aβ)–centric scheme depicts production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Their 
peroxidative attack on cell and organelle membrane lipids yields the mitochondrial toxins hydroxynonenal (HNE) and malondialdehyde. 
Oxidative damage to membrane-bound, ion-specific ATPases and stimulation of calcium (Ca2+) entry mechanisms — for example, glu-
tamate (N-methyl-d-aspartate [NMDA]) receptors (NMDAr), membrane-attack complex (MAC) of complement, and ion-selective amy-
loid pore formation — cause cytosolic and mitochondrial Ca2+ overload. Cellular Aβ directly attacks electron transport complex IV (cyto-
chrome c oxidase) and key Krebs-cycle enzymes (α-ketoglutarate and pyruvate dehydrogenase) and damages mitochondrial DNA (mtDNA), 
leading to fragmentation. Lipid peroxidation products also promote tau phosphorylation and aggregation, which in turn inhibit complex I. 
Exaggerated amounts of ROS and RNS are generated at complexes I and III. As the mitochondrial membrane potential (MPP) collapses 
and permeability-transition pores (ψm) open, caspases are activated. Aβ also induces the stress-activated protein kinases p38 and c-jun 
N-terminal kinase (JNK), as well as p53, which are further linked with apoptosis. Substrate deficiencies, notably NADH and glucose, 
combine with electron transport uncoupling to further diminish ATP production. Alcohol dehydrogenase was recently identified as the 
mitochondrial-binding target for Aβ. Endoplasmic reticulum contributions are shown. GLUT1, 4 denotes glucose transporter 1, 4.
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participate in metal ion–catalyzed hydroxyl radi-
cal formation. Stimulated microglia are a major 
source of the highly diffusible nitric oxide radi-
cal. These reactive oxygen species and reactive 
nitrogen species damage several molecular tar-
gets. Peroxidation of membrane lipids yields toxic 
aldehydes,90 which impair critical mitochondrial 
enzymes.77,91 Other essential proteins are direct-
ly oxidized, yielding carbonyl and nitrated deriv-
atives.92 Subsequently, increases in membrane 
permeability to calcium, other ionic imbalances, 
and impaired glucose transport93 aggravate the 
energy imbalance.

Elevated levels of free divalent transition metal 
ions (iron, copper, and zinc) and aluminum are 
linked with reactive oxygen species–mediated 
damage and neurodegeneration in several 
ways.94-100 These metal ions also promote aggre-
gation of tau and changes in its conformation or 
phosphorylation.95 Zinc, typically thought to be 
a toxin in Alzheimer’s disease, might at lower 
concentrations actually protect cells by blocking 
Aβ channels96 or compete with copper for Aβ 
binding.97

Although animal models and most cross-sec-
tional studies in aging populations show an as-
sociation between antioxidant intake and cognitive 
performance, randomized trials of antioxidants 
have generally failed.98 Therapeutic chelation of 
divalent metals is potentially harmful because 
essential enzymes rely on coordination with them. 
In a pilot phase 2 trial (NCT00471211), PBT2, a 
safe compound derived from clioquinol that atten-
uates metal proteins,99 showed some efficacy.

Insulin-Signaling Pathway

Another metabolic disturbance of emerging im-
portance in Alzheimer’s disease and tied into 
synaptic and energy homeostasis involves insulin 
signaling in the brain. Subgroups of patients 
with advanced Alzheimer’s disease have high fast-
ing insulin levels and low rates of glucose dis-
posal (peripheral resistance).100 Glucose intoler-
ance and type 2 diabetes are considered to be 
risk factors for dementia.101 Levels of insulin re-
ceptors, glucose-transport proteins, and other 
insulin-pathway components in the brain are re-
duced in some studies of Alzheimer’s disease102 
(central resistance). Insulin (mostly bloodborne) 
and brain-derived insulin-like growth factor I ini-
tiate signals in the brain by activating the phos-
phatidylinositol-3-kinase–Akt (also known as pro-
tein kinase B) pathway and the mitogen-activated 

protein kinase–extracellular signal-regulated ki-
nase pathway,103 but it is unclear whether signal-
ing is up-regulated (compensatory) or down-reg-
ulated (pathologic) in Alzheimer’s disease. Aging 
and life span are also influenced by insulin.104 
Resistance to insulin signaling renders neurons 
energy-deficient and vulnerable to oxidizing or oth-
er metabolic insults and impairs synaptic plastic-
ity. Moreover, the higher serum glucose levels that 
are common in normal aging directly damage hip-
pocampal structures,105 up-regulate the tau kinase, 
glycogen synthase kinase 3β,106 and reduce levels 
of insulin-degrading enzyme in the brain in Alz
heimer’s disease.107 Treatment with thiazolidine 
drugs (peroxisome-proliferator-activated receptor 
[PPAR] agonists, which activate insulin-respon-
sive gene transcription) prevented Alzheimer’s dis-
ease–associated changes and cognitive decline in 
transgenic mice103,108 and had significant effects 
in subpopulations of patients with Alzheimer’s 
disease.109

Vascular Effects

In Alzheimer’s disease, vascular injury and pa-
renchymal inflammation perpetuate the cycle of 
protein aggregation and oxidation in the brain; 
damage from strokes and white-matter lesions 
contribute greatly to cognitive decline. Ischemic 
disease affects 60 to 90% of patients with Alz
heimer’s disease, with major infarctions repre-
senting one third of vascular lesions in autopsy 
cases. Conversely, one third of putative cases of 
vascular dementia have coincidental pathological 
features of Alzheimer’s disease. Although clini-
cally and radiographically “pure” cases of vascu-
lar dementia are recognized,110,111 most cases of 
dementia are in fact mixed. Pervasive pathologi-
cal changes include cerebral amyloid angiopathy,112 
affecting more than 90% of patients with Alz
heimer’s disease, capillary abnormalities, disrup-
tion of the blood–brain barrier, and large-vessel 
atheroma.113 None of these changes alone ex-
plain the symmetric reductions of cerebral blood 
flow in patients with Alzheimer’s disease, which 
are more likely to reflect regional energy under-
utilization.114,115

Another hypothesis holds that clearance of Aβ 
along diseased perivascular channels and through 
the blood–brain barrier is impeded in Alzhei
mer’s disease. The source of vascular Aβ (mostly 
40 amino acid form) is heterogeneous, compris-
ing neurons, degenerating myocytes, and the 
circulation. Amyloid deposition in the arteriolar 
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wall enhances vasoconstriction in ex vivo stud-
ies.116 Aβ is also cytotoxic to endothelial117 and 
smooth-muscle118 cells, conferring a predisposi-
tion to lobar hemorrhage in advanced age. The 
“neurovascular uncoupling” hypothesis proposes 
that deregulation of Aβ transport across the 
capillary blood–brain barrier is caused by the 
imbalanced expression of low-density lipopro-
tein receptor–related proteins and receptors for 
advanced glycation end products, which mediate 
Aβ efflux and influx, respectively119 (Fig. 5).

Short of prophylaxis against stroke, there are 
few specific therapies for the vascular changes 
in Alzheimer’s disease. Centrally acting angio-
tensin-converting–enzyme inhibitors were asso-
ciated with reductions in yearly cognitive decline 
in one observational study.120 Patients with hyper-
tension who are receiving medication have fewer 
neuropathologic features of Alzheimer’s dis-
ease.121 Folic acid reduces homocysteine levels 
and may lower the risk of Alzheimer’s disease, 
but it does not improve cognition in established 
Alzheimer’s disease.122,123 A phase 2 study of in-
hibitors of receptors for advanced glycation end 
products in mild-to-moderate Alzheimer’s dis-
ease (NCT00566397) is under way. Concern has 
been expressed about the safety of Aβ immuno-
therapy because of the possibilities of increased 
vascular amyloid, microhemorrhages, and vaso
genic edema as the efflux of Aβ into vascular 
compartments is stimulated.124

Inflammation

Activated microglia and reactive astrocytes local-
ize to fibrillar plaques, and their biochemical 
markers are elevated in the brains of patients 
with Alzheimer’s disease.125 Initially, the phago-
cytic microglia engulf and degrade Aβ. However, 
chronically activated microglia release chemo
kines and a cascade of damaging cytokines — 
notably, interleukin-1, interleukin-6, and tumor 
necrosis factor α (TNF-α)126 (Fig. 5). In common 
with vascular cells, microglia express receptors 
for advanced glycation end products, which bind 
Aβ, thereby amplifying the generation of cyto
kines, glutamate, and nitric oxide.89,127 In exper-
imental studies, chemokines promote the migra-
tion of monocytes from the peripheral blood into 
plaque-bearing brain.128

Fibrillar Aβ and glial activation also stimulate 
the classic complement pathway.129 Tangles and 
plaques contain complement cleavage products, 
C1q and C5b-9, indicating that opsonization and 

autolytic attack are under way.126 Stimulated as-
troglia also release acute-phase reactants, alpha1-
antichymotrypsin, alpha2-macroglobulin, and 
C-reactive protein, which can both aggravate and 
ameliorate Alzheimer’s disease. Although inflam-
matory (and oxidative) events are implicated in a 
breakdown of the vascular blood–brain barrier 
in Alzheimer’s disease, it is not certain that this 
leads to monocyte or amyloid influx from the 
circulation in humans.130,131

The contradictory roles of microglia — elim-
inating Aβ and releasing proinflammatory mole-
cules — complicate treatment.132 Nonsteroidal 
antiinflammatory agents have been reported to 
lower the risk of Alzheimer’s disease and slow 
progression of the disease, but only in prospec-
tive observational studies.133,134 Their mechanisms 
of action include selective reduction of Aβ42,135,136 
inhibition of cyclooxygenase-2 or the prostaglan-
din E2 receptor, stimulation of phagocytosis by 
microglia, and activation of PPAR-γ. Recent ran-
domized trials of nonsteroidal antiinflammatory 
agents137 and a trial of a derivative, tarenflurbil 
(Flurizan) (NCT00105547), did not show evidence 
of reducing the risk of Alzheimer’s disease or 
slowing cognitive decline. In addition to the Aβ-
immunization efforts, various TNF-α and com-
plement factor blockers and agents that promote 
phagocytosis are being investigated.138

Calcium

Loss of calcium regulation is common to several 
neurodegenerative disorders. In Alzheimer’s dis-
ease, elevated concentrations of cytosolic calcium 
stimulate Aβ aggregation and amyloidogene-
sis.139,140 The presenilins modulate calcium bal-
ance. Presenilin mutations cause about one half 
of the few cases of Alzheimer’s disease (<1%) 
that are of the early-onset, familial type. These 
mutations might disrupt calcium homeostasis in 
endoplasmic reticulum.141,142 However, the main 
effect of the mutations is to increase Aβ42 levels, 
which in turn increases calcium stores in the en-
doplasmic reticulum and the release of calcium 
into the cytoplasm.143 The relevance of these 
mechanisms to sporadic Alzheimer’s disease is 
unclear.

A chronic state of excitatory amino acid (glu-
taminergic) receptor activation is thought to ag-
gravate neuronal damage in late-stage Alzhei
mer’s disease.144 Glutamate increases cytosolic 
calcium, which in turn stimulates calcium-release 
channels in the endoplasmic reticulum. How-
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ever, the evidence of excessive excitatory amino 
acid mechanisms in Alzheimer’s disease is mod-
est. Aβ forms voltage-independent, cation chan-
nels in lipid membranes,145 resulting in calcium 
uptake and degeneration of neuritis.146 Indirectly, 
glutamate activates voltage-gated calcium chan-
nels. The L-type voltage-gated calcium-channel 

blocker, MEM 1003, is in a phase 3 trial, and 
memantine, an NMDA-receptor blocker, is ap-
proved by the Food and Drug Administration.

Axonal-Transport Deficits

Another internal derangement that is probably 
an effect rather than a cause of Alzheimer’s dis-
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Figure 5. Inflammation and Mechanisms of Aβ Clearance.

β-amyloid peptide (Aβ) is formed within intracellular compartments (the endoplasmic reticulum, Golgi apparatus, and endosomes) or it 
can enter multiple cell types through the low-density lipoprotein receptor–related protein. The ubiquitous apolipoprotein E (APOE) and α2- 
macroglobulins (α2M) are chaperones in this process and in the genesis of extracellular plaques. Microglia directly engulf Aβ through 
phagocytosis. Astrocytes also participate in Aβ clearance through receptor-mediated internalization and facilitation of its transfer out of the 
central nervous system and into the circulation. Microglia and astrocytes are recruited and stimulated in Alzheimer’s disease to release 
proinflammatory cytokines and acute-phase reactants. Receptors for advanced glycation end products (RAGE) molecules transduce extra-
cellular Aβ toxic and inflammatory effects and mediate influx of vascular Aβ. The inflammatory milieu provokes neuritic changes and break-
down of the vascular blood–brain barrier. In addition to cell-mediated reactions, Aβ clearance occurs through enzymatic proteolysis, mainly 
through neprilysin (Nep) and insulin-degrading enzyme (IDE). Aβ oligomers block proteasome function, facilitating the buildup of intracel-
lular tau and accumulation of Aβ into “aggresomes.” APP denotes amyloid precursor protein, MMP matrix metalloproteinase, MOTC micro-
tubule-organizing center, and MVB multivesicular body.
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ease is a reduction in the transport of critical 
protein cargoes to the synapse. Molecular mo-
tors of the kinesin family drive vesicles and mito-
chondria destined for the synaptic terminal along 
axonal microtubules. The kinesin superfamily 
heavy-chain protein 5 and its associated kinesin 
light chain 1 facilitate “fast” anterograde trans-
port. Tau forms the cross-bridges that maintain 
the critical spacing between microtubules.

The riddle of Alzheimer’s disease is entwined 
with the elusive goal of finding the biologic func-
tion of amyloid precursor protein. It was exciting 
when amyloid precursor protein, BACE-1, and 
presenilin 1 were reported to undergo fast antero-
grade transport147 into terminal fields where Aβ 
and other proteolytic derivatives are released.148 
Impairment of transport causes amyloid precur-
sor protein, vesicle, and kinesin accumulations 
in axonal swelling, local Aβ deposition, and neu-
rodegeneration.149,150 However, whether amyloid 
precursor protein functions as the critical cargo 
vesicle receptor for the motor protein complex 
remains unclear.151 Furthermore, an essential role 
is not evident from studies of amyloid precursor 
protein–deficient mice, which are viable, with 
only subtle synaptic and learning defects.152,153

The anatomical distribution of pathological 
features in Alzheimer’s disease nonetheless sug-
gests that microtubules are dysfunctional, since 
tau is primarily deranged in the source of corti-
cal projections.154 In addition, defects in the 
white-matter tract are observed in patients at all 
stages of Alzheimer’s disease155 and in animal 
models.156 Pharmacologic disruption of micro-
tubules and inhibition of tau phosphatases cause 
similar axonal swelling and synaptic failure.157 
Since paclitaxel reverses these defects in mouse 
models,158 inhibitors of tau polymerization, 
phospho tau peptide vaccines,159 and other micro-
tubule stabilizers160 are being investigated.

Aberrant Cell-Cycle Reentry

In league with secondary deregulations of cal-
cium and transport, a failure in the normal sup-
pression of the cell cycle in Alzheimer’s disease 
has been hypothesized.161 Markers of aberrant 
cell-cycle reentry are detected in all stages of Alz
heimer’s disease and in mild cognitive impair-
ment,162 but they are most prominent at the G1–
S-phase boundary.163 This may progress to 
completion of DNA replication, resulting in tetra-
ploid neurons and activation of mitotic cyclins, 
but mitoses are absent.164 Cyclin-dependent ki-

nase–inhibitor proteins, which maintain cell-cycle 
exit, are also deranged in Alzheimer’s disease.165 
Oxidative stress and DNA-damaging agents, in-
cluding Aβ and the carboxyl-terminal 99 amino 
acid BACE-1 product C99, all initiate DNA repli-
cation and death in cultured neurons.166 The 
event inciting cell-cycle reentry in Alzheimer’s dis-
ease is unknown. Furthermore, whether it is patho-
genic or just reflects a survival response to repair 
damaged DNA167 is unclear.

Cholesterol Metabolism

A defect in cholesterol metabolism is an appeal-
ing hypothesis because it ties together the apo-
lipoprotein E (APOE) genetic risk, amyloid pro-
duction and aggregation, and vasculopathy of 
Alzheimer’s disease. However, proof is also lack-
ing for this hypothesis. Cholesterol is an essential 
component of neuronal membranes and is con-
centrated in sphingolipid islands termed “lipid 
rafts.” Rafts are ordered platforms for the assem-
bly of β-secretases and γ-secretases and process-
ing of amyloid precursor protein into Aβ168 (Fig. 
1 and 2). Aβ generation and aggregation are pro-
moted and clearance from the brain is reduced 
when an overabundance of esterified cholesterol 
decreases membrane lipid turnover. Glial-derived 
APOE is the primary cholesterol transporter in 
the brain. A major determinant of the risk of 
late-onset Alzheimer’s disease is the APOE iso-
form inheritance pattern (APOE2, APOE3, or 
APOE4)169; a single E4 allele increases the risk by 
a factor of 4, and two E4 alleles increase the risk 
by a factor of 19.170 APOE4 is not only a patho-
logical chaperone, promoting Aβ deposition171 
and tau phosphorylation,172 but it is also the least 
effective of the three in promoting healthy mem-
brane lipid turnover and the uptake of lipopro-
tein particles.

High serum cholesterol levels in midlife in-
crease the risk of Alzheimer’s disease.173 In ob-
servational studies, use of statins was shown to 
be associated with a reduced risk. Statins appear 
to reduce the membrane pool of free cholester-
ol.174 Other actions of statins that are not depen-
dent on cholesterol include reductions in inflam-
mation175 and isoprenoids and up-regulation of 
both α-secretase176 and vascular function. One 
prospective trial of statins showed cognitive im-
provements in patients with mild Alzheimer’s dis
ease,177 but a recent multicenter trial did not.178 
Thus, the benefit of statins remains controversial. 
An alternative pharmacologic approach is to 
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limit the esterification of cholesterol.179 Improve-
ment of membrane biophysics and function 
through ingestion of n–3 fatty acid supplements 
has also been studied (NCT00440050).180

Conclusions

An effective treatment for sporadic Alzheimer’s 
disease rests on the translation of the disease 
pathways we have discussed, as well as additional 
molecular mechanisms or new risk genes (e.g., 
apolipoprotein J) defined by gene-expression pro-
filing and whole-genome association studies,181,182 
into specific pharmacologic targets. Examples of 
recently discovered proteins encoded by these 
risk genes and mechanisms include apolipopro-
tein J (clusterin), another Aβ chaperone,183 
TOMM40, a transporter of proteins across the mi-
tochondrial membrane, and Sortillin-related re-
ceptor, which functions to partition amyloid pre-
cursor protein away from β-secretase and 
γ-secretase; this is consistent with observations 
that levels are reduced in the brains of patients 
with Alzheimer’s disease and mild cognitive im-
pairment.184,185 Another potential risk factor for 
sporadic Alzheimer’s disease, general anesthe-
sia, promotes tau insolubility and Aβ oligomer-
ization,186,187 deficiency of estrogen in the brains 
of postmenopausal women,188 and chronic acti-
vation of the glucocorticoid axis.189 However, 
their underlying mechanisms are diverse, and  
whether any of these factors lead to amyloid de-

position and tauopathy in humans is unknown. 
Prospective studies also show that cognitive lei-
sure activity and training can lower the risk of 
dementia190; findings from these studies provide 
support for the concept of building a “cognitive 
reserve.” The figure in the Supplementary Ap-
pendix (available with the full text of this article 
at NEJM.org) summarizes the heterogeneity of 
pathways that could initiate and drive Alzhei
mer’s disease. There is no single linear chain of 
events. Complicating matters, some changes are 
not pathologic but reactionary or protective. 
Thus, the development of a multitargeted ap-
proach to prevent or symptomatically treat Alz
heimer’s disease, as used in current practice for 
other multigenic disorders, is needed.191 Recent 
studies point to brain atrophy and other patho-
logic conditions, not severe amyloid or tangle 
load, in accounting for dementia in the oldest old 
(persons 80 years of age or older).192 It remains 
possible that many of these mechanisms, includ-
ing the amyloid hypothesis, are minor or wrong 
and that some critical aging-related process is 
the disease trigger.
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